Loss of constraint on fracture in thin film structures due to creep
نویسندگان
چکیده
Fracture in thin films is normally constrained by the substrates. If the substrate creeps, however, the constraint will be lost over time. This paper presents a two-dimensional model for channel cracks in an elastic film on a viscous layer, and implements an extended finite element method to evolve the displacement field and the stress intensity factor with relatively coarse meshes. Solutions are obtained for stress intensity factors of channel cracks with several in-plane geometries. The stress intensity factor increases with time, indicating the loss of constraint. Several scaling laws are obtained. Extensions of the present model are outlined for nonlinear creeping and viscoelastic layers, as well as a thick viscous substrate. Fracture in thin film structures subjected to ratcheting deformation under cyclic temperatures using the analogy between creeping and ratcheting is also discussed. 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
منابع مشابه
Ohmic Contact of Cu/Mo and Cu/Ti Thin Layers on Multi-Crystalline Silicon Substrates
Cu-Mo and Cu-Ti contact structures were fabricated on multi-crystalline silicon substrates to provide a low resistance ohmic contact. Deposition steps are done in an excellent vacuum chamber by means of electron beam evaporation and samples are then annealed for the realization of an efficient alloy layer. The effects of process parameters such as film thickness, annealing duration and temp...
متن کاملAtomic Simulation of Temperature Effect on the Mechanical Properties of Thin Films
The molecular dynamic technique was used to simulate the nano-indentation test on the thin films of silver, titanium, aluminum and copper which were coated on the silicone substrate. The mechanical properties of the selected thin films were studied in terms of the temperature. The temperature was changed from 193 K to 793 K with an increment of 100 K. To investigate the effect of temperature on...
متن کاملEffects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties
In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...
متن کاملThin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS
In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...
متن کاملA Continuum Theory That Couples Creep and Self - Diffusion
In a single-component material, a chemical potential gradient or a wind force drives self-diffusion. If the self-diffusion flux has a divergence, the material deforms. We formulate a continuum theory to be consistent with this kinematic constraint. When the diffusion flux is divergence-free, the theory decouples into Stokes’s theory for creep and Herring’s theory for self-diffusion. A length em...
متن کامل